PREVIOUS SEMESTER EXAMINATION DECEMBER-2022

Course Code: BS-BTM401
Duration: 03 Hours
Maximum Points: 100
Semester: IV

- Attempt any five out of se, ven questions
- Use of scientific calculi? tor is allowed.

PREVIOUS SEMESTER EXAMINATION DECEMBER-2022

PRUEVIOUS SEMESTER EXAMINATION DECEMBER-2022

	be ir population $9: 3: 3: 1$. Is there any evidence to doubt the theory at 5% Los?										
$\overline{Q V}$	Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ dividing the range into four equal parts using (i) Trapezoidal rale (ii) Simpson's $1 / 3^{\text {rd }}$ rule						08	3	2	7	
$\begin{aligned} & \mathrm{QVII} \\ & \text { a) } \end{aligned}$	Evaluate by Green's them $\oint_{0} \mathrm{e}^{-\mathrm{x}}(\sin \mathrm{y} \mathrm{dx}+\cos \mathrm{y}$ dy) where C is the rectangle with vertices $(0,0),(\pi / 0)(\pi, \pi / 2) \&(0, \pi / 2)$.						06	2	1		
$\begin{aligned} & \text { QVI } \\ & \text { b) } \end{aligned}$		 2 2	$\begin{array}{\|l\|} \hline 3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { gresu } \\ \hline 50 \\ \hline 5 \\ \hline \end{array}$	5	6 60	06	1	3	5	
$\begin{aligned} & \mathrm{QVI} \\ & \text { c) } \end{aligned}$	Show that the dife is biased Using Runcge-Kutta method $I V^{\text {th }}$ order. Solve $\frac{d y}{d x}=\frac{1}{x+y} ; x_{0}=0$, $y_{0}=1 f_{\text {or }}$ the interval $(0,1)$ choosing $h_{1}=0.5$.						08	3	1	7	
$\begin{aligned} & \mathrm{QVI} \\ & \text { (a) } \end{aligned}$	Using Newton-Raphson method fird the root of $x \log _{10} x=12.34$ with $x_{0}=10$ upto 3 places of decimal.						10	3	3		
$\begin{aligned} & \mathrm{QV} \\ & \mathrm{I} \mathrm{D} \end{aligned}$	Verify Divergence Theorem for $\vec{F}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}$ taken over the bounded by the cylinder $x^{2}+y^{2}=4, z-0, z=3$						10	2	2		

PREVIOUS SEMESTER EXAMINATION DECEMBER 2022 EVEN SEMESTER COURSES

Program: S Y BTech. (Mechanical Engineering) fem IV.
Course Code: PC-BTM403
Course Name: FLUID MECHANICS
\section*{Notes:}
\qquad
- Attempt any five questions from remaining seven questions.
- Answers to all sub questions must be grouped together.
- Figures to the right indicate full marks.
- Make any suitable assumption if needed with proper reasoning.

2A111~2

Duration: 3 Hours
Maximum Points: 100

Semester: IV

Q. No.

Questions

1. A. Define and explain following terms:

Points CO BL

a) Compressible flow,
b) Sonic Velocity,
c) Mach Number
d) Stagnation Properties,
e) Shock Wave
B. Two reservoirs 5.2 km apart are connected with a pipeline which consists of a 225 nmm diameter pipe for the first 1.6 km sloping at 5.7 m per km . For remaining distance the pipe diameter is 150 mm laid at a slop of 1.9 m per km . The levels of water above the pipe opening are 6 m in the upper reservoir and 3.7 m in lower reservoir. Taking $\mathrm{f}=0.024$ for both pipes and coefficient of contraction ∓ 0.6, calculate the rate of discharge through the pipeline.
2. A. Derive Bernoulli's equation along a streamline starting from JavierStokes equation. Briefly discuss the conditions for its validity.
B. Consider two long, horizontal parallel plates with a viscous incompressible fluid placed between them. The two plates moves in two opposite direction with two different constant velocities. There is no pressure gradient and the only body force due to the weight. Starting with the Navier-Stokes equation, determine an expression for the velocity profile for laminar flow between the two plates.
3. A. For a given flow field $\overline{\mathrm{V}}=2 x \overline{\mathrm{i}}-\mathrm{yt} \mathrm{j} \mathrm{m} / \mathrm{s}$ where x and y are in meters and t is in seconds.
a) What is the dimension of flow?
b) Is the flow possible?
c) Find the equation of the streamline passing through $(2,-1)$.
d) Calculate the acceleration, the angular velocity, the vorticity vector.
B. Listing all assumption made, derive an expression to estimate the force acting on an inclined plane lamina submerged in liquid. Also find an expression for point of application of this resultant force.
4. A. Listing all features and assümption derive Von Karmon's Integral equation.
B. A nozzle is attached to a 6 -cm-diameter hose but the horizontal nozzle turns the water through an angle of 90°. The nozzle exit is 3 cm in diameter and the flow rate is 500 liter $/ \mathrm{min}$. Determine the force components of the water on the nozzle and the magnitude of the resultant force. The pressure in the hose is 400 kPa and the water exits to the atmosphere. Analyze and solve the problem using Reynolds transport theorem.
5. A. Differentiate between laminar and turbulent flow. Explain developing and developed flow features in pipe and write empirical relation to estimate developing length in laminar and turbulent.
B. If the velocity distribution in a laminar boundary layer over a flat plate is given by, $\frac{u}{U}=\sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)$, calculate displacement and momentum thickness and wall shear stress.
6. A. Explain following terms:
a) Closure problem of turbulent flow
b) Turbulent velocity profile
c) Darcy friction factor
B. Explain the concept of flow separation and discuss about various methods to control it.
A. Explain following with illustration:
a) Lagrangian and Eulerian motion of fluid particle
b) Viscous and Inviscid flows
c) Incompressible and compressible flow
d) Uniform and non-uniform flows
B. The cylinder as shown in following figure is rotated about the central axis. What rotational speed is required so that the water just touches top corner. Also, fine the pressure at point A and force acting at the bottom of the tank.

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058
Previous Year End Semester - December 2022 Examinations

Program: S.Y.B. Tech. (Mechanical Engineering)

Course Code: PC-BTM404
Course Name: Mechanical Engineering Measurement

Notes:

1. Question number 1 is compulsory
2. Solve any 4 questions from question number 2 to 7
3. If necessary assume suitable data with justification
4. Draw neat labeled sketches wherever required.

Duration: 03 Hrs
281212 Maximum Points: 100

Semester: IV

Previous Year End Semester - December 2022 Examinations

Previous Year End Semester - December 2022 Examinations

With neat sketches explain the following terms with respect to the measurement system:
7(B)
(i) Accuracy (ii) Hysteresis (iii) Resolution (iv) Span and Range (v) Drift (vi) Dead zone (vii) Precision

Previous Semester Examination Dec 2022
Program: B.Tech Second Year Mechanical
Course Code: PC-BTM406
Course Name: Material Science

Notes:

1. Question no 1 is compulsory
2. Attempt any four questions from the remaining six questions.
3. If necessary assume suitable data with justification
4. Draw neatly labeled sketches wherever required.

Q. No.	Questions	Points	CO	BL	PI
1A	A FCC crystal yield under a normal stress of 2MPa applied in the $[\overline{13}$ 2] system. The slip system is (111) [I 0 1]. Determine critical resolved shear stress. Also draw cubic crystals showing, slip plane and slip direction.	06	2	5	3.2 .3
1B	Explain the reason behind the Properties changes when enginering Materials are in Bulk and Fiber Forms. [Note: explain by taking some properties and materials]	06	4	3	3.2 .3
1C	Derive an equation for finding out the critical size of nucleation Explain the relationship between critical radius and free energy with the help of a suitable figure.	08	2,3	4	3.8 .1
2A	Discuss why it is important to consider the entire life cycle rather than just the first stage of materials.	06	1,4	6	3.2 .1
2B	You are appointed as a material engineer in the medical implant industry. Suggest material for total hip replacement. Select suitable material and explain it. Also explain why a particular material is only selected.	06	1,2	6	4.2 .1
2C	Draw Fe-C equilibrium diagram and label the temperature, composition, and phases. "Liquid is going to convert into two solid" explain this statement using Fe-C diagram. Also, find the exact amount of components of the given statement.	08	3	4	3.8 .1
3A	What is the full annealing heat treatment process? Explain full annealing in details for hypoeutectoid steel with schematic phase diagram.	08	3	5	3.1 .1

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING
(Government Aided Autonomous Institute)
Munshı Nagar, Andheri (W) Mumbai - 400058
Previone Semester Examination Dec 2022

3B	Provione Semester Examination Dac 2022 Name the material which changes its optical properties. Write an application where such material is used. Explain the working of material with anyone application.	07	1	2	1.3.1
3C	Following are the product specification required from the customer. Suggest the process to achieve the given requirement and procedure. 1. Gear, Steel $(0.1 \% \mathrm{Al}, 1.5 \% \mathrm{Cr}, 0.3 \% \mathrm{Mo})$ surface hardness 1100 HV , case depth: 0.1 to 0.6 mm . Crankshaft, medium carbon steel, case depth: 0.7 to 6 mm .	05	4,3	5	3.1.1
4A	Discuss each case of the heat treatment process of $\mathrm{Fe}-0.77 \% \mathrm{C}$ eutectoid steel rapidly cooled from a preheated temperature of $860^{\circ} \mathrm{C}\left(>727^{\circ} \mathrm{C}\right)$ as follows [NOTE: explain, write properties of the final product) 1. Rapidly cool to $400^{\circ} \mathrm{C}$, hold for $10^{4} \mathrm{~s}$ and quench to room temperature 2. Rapidly cool to $600^{\circ} \mathrm{C}$, hold for 10 s and quench to room temperature; 3 Rapidly cool to $650^{\circ} \mathrm{C}$, hold for 20 s , rapidly cool to $400^{\circ} \mathrm{C}$, hold for $10^{3} \mathrm{~s}$ and quench to room temperature;	10	4	6	2.4.1

Bharatiya Vidya Bhavan's
SARDAR PATEL. COLLEGE OF ENGINEERING
(Goverument Aided Autonomous Institute)
Munshi Nagar, Andherl (W) Mumbai - 400058
Previous Semester Examination Dec 2022

4 B	Explain metallurgical classes of stainless steel. Explain which stainless steel are not heat treatable and the reason behind it.	05	4	2	3.2.2
4C	Why does diamond stay stable at room tenperature and not transform to graphite although it is an unstable phase of carbon at room temperature? Explain with a suitable diagram.	05	2	3	2.3.1
5A	Write the effect of alloying elements on the properties of materials when they are added to the material composition. 1. Nickel 2. Molybdenum 3. Vanadium 4. Cobalt 5. lead	06	4		2.2.1
5B	Classify ceramics based on application. Explain electro ceramics in detail.	06	4	4	4.2.2
5 C	Determine the Miller indices for the planes shown in the following unit cell:	08	4	2,6	2.2.2

6A	Classify composite based on the form of reinforcement. Explain single layer fibrous composite materials.	08	4	4	4.2.2
68	Write a composition of the following materials and their application. 1. Muntz metal 2. Nickel gun-metal 3. Cartridge Brass 4. Dow metal	06	3,4	3	3.2 .1
6C	Explain the method of plotting a TTT diagram. What information is obtained from this diagram?	06	3	2	2.3.1
7A	From the data given below for the $\mathrm{Cu}-\mathrm{Ni}$ system, plot the equilibrium diagram to scale and label the diagram. The melting point of $\mathrm{Cu}: 1,085^{\circ} \mathrm{C}$. the melting point of $\mathrm{Ni}: 1,455^{\circ} \mathrm{C}$ Answer the following for $60 \% \mathrm{Ni}$ alloy composition: A. What is the composition of the first solid crystallizing out from liquid? B. What is the composition of the last solid formed at the end of the solidification process? C. What is the amount of solid and liquid at $1340^{\circ} \mathrm{C}$.	08	3	3	2.4.1

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

KT-EXAMINATIONS (Even SEM) DEC 2022

Program: BTech Mechanical eng
Course Code: PC-BTM412

Course Name: Kinematics of Machinery
Notes:

Duration: 3.00 hr
Maximum Points: 100
Semester: IV

1. Question number ONE is compulsory solve any four out of remaining
2. Question nos. three and five should be solved on drawing sheet.
3. Answers to each sub-questions are grouped together
4. Use of scientific calculator is allowed
5. Begin answer to each question on new page.
6. Candidates should write the answer legibly

Q.No.	Questions	Pts	Cos	BL	PI
1	a) Classify the kinematic pairs based on different criterion. b) Describe with neat sketch a quick return motion mechanism (slotted lever-crank) suitable for shaping machine. Show how the ratio of time taken for the two strokes is determined? c) Sketch the Davis steering gear mechanism and show that it satisfies the required condition for correct steering. d) Sketch and describe different types of cam \& followers which are used for motion modification.	4×5	1	2,3	2.4.
	a) A driving shaft of a Hooke's joint rotates at a uniform speed of 360 rpm. If the maximum variation in the driven shaft is $\pm 4 \%$ of the mean speed, determine the greatest permissible angle between the axes of the shafts. What are the maximum and minimum speeds of the driven shaft? b) State the conditions for straight line generating mechanism. Sketch the Hart's mechanism and prove that the tracing point 'P' describes the straight line.	10	2	3	2.3.

3	a) A crank-rocker linkage has a 100 mm frame, a 25 mm crank, a 90 mm coupler and a 75 mm rocker. For the given mechanism find the minimum and maximum transmission angle. Sketch both the toggle position and find corresponding crank angles and transmission angles. (Solve graphically). b) For the above given mechanism, find the angular velocities of coupler and follower in terms of input angular velocity of crank as ω, for the configuration of minimum and maximum transmission angle.(Use IC method)	$\left.\right\|^{8}$	1	3,4	$\begin{array}{\|c\|} \hline 2.3 . \\ 1 \end{array}$
4	a) Explain the meaning of the following terms: circular pitch, diametral pitch, module, pressure angle. Illustrate with sketches where possible. b) A gear set with a module of $4 \mathrm{~mm} /$ tooth has involute teeth with 20° pressure angle, and has 19 and 31 teeth, respectively. They have 1.0 m for the addendum and 1.5 m for the dedendum. (In SI. tooth system modules are given in, m , and $\mathrm{a}=1.0 \mathrm{~m}$ means 1 module, not 1 meter). Tabulate the addendum, dedendum, clearance, circular pitch, base pitch, base circle radius, contact ratio, angle of action for the pinion and wheel.	$\begin{aligned} & \hline 6 \\ & 14 \end{aligned}$	4	3	$\begin{aligned} & \hline 2.3 . \\ & 1 \end{aligned}$
5	a) Use following data in drawing the displacement, velocity, acceleration verses theta ${ }^{(\theta)}$ diagram for a cam in which a knife-edged follower is raised with SHM and is lowered with SHM: least radius of cam 40 mm , lift 50 mm , angle of ascent 80°, angle of descent 60°, dwell between ascent and descent 40°, cam rotation 100 rpm . Determine the maximum velocity and acceleration during ascent and descent. b) Deduce the expression for displacement, velocity and acceleration of the follower when it moves with SHM.	${ }^{14}$	4	3	2.3 1
6	a) Deduce the expression for minimum number of teeth on gear wheel. b) A spur gears with 9 and 36 teeth are to be cut with 20° full-depth cutter with module of 8 mm . i. Determine the amount that the addendum of the gear must be decreased in order to avoid the interference. ii. If the addendum of the pinion is increased by the same amount, determine the contact ratio.	10	4	4	$\begin{aligned} & 2.2 . \\ & 3 \end{aligned}$
7	a) State the advantages of gear drive over the belt drive. b) What is interference in gear? How it is avoided? c) Define kinematic pair, link, mechanism (draw suitable sketch). d) State and explain Kennedy's theorem. e) State and prove condition for correct steering.	20	4 4 2 2 2	2	$\begin{aligned} & 2.3 . \\ & 2 \end{aligned}$

Duration: 3 Hours
Max. Points: 100
Semester: IV

Course Name: Solid Mechanics

Notes:

1. Question no. $\mathbf{1}$ is compulsory, solve any 4 of remaining 6 questions.
2. Assume suitable data if necessary.

Page 1 of 5

B) Figure shows a solid element located inside a stressed body and defined in a cylindrical coordinate system.

To derive one of the equilibrium equations, it is required to compute all forces acting on this element in z direction due to stresses acting on its six faces and the body force.
Obtain the expressions for the forces
 acting in z-direction on the two faces bb'c'c and aa'd'd and for the body force acting on the element in z-direction.
C) Discuss how temperature loading is accounted for in the stressstrain relationship. Obtain the stresses for a case wherein an unconstrained solid is uniformly heated.
D) Describe the Bauschinger effect with the help of load-displacement diagram. In which situations this effect is advantageous?
Q5 A) A thick-walled pipe has an internal radius of 500 mm . It is subjected to internal pressure of 1.0 MPa and external pressure of 0.2 MPa . If $E=200 \mathrm{GPa}$ and $v=0.3$, determine the thickness as per the maximum principal stress theory of failure. Consider tensile strength as 400 MPa and factor of safety as 2.0 . Also determine the changes in internal and external radii for the pipe with the calculated thickness.
B) A thin-walled box section of dimensions width $=4 a$, breadth $=3 a$ and wall thickness - t is to be compared with a solid section of diameter $2 a$. Find the thickness t so that the two sections have (a) same maximum stress for the same torque and (b) same torsional stiffness.
C) Describe the three modes of fracture with neat sketch. Give two examples of each mode from real life situations.
Q6 A) The matrix representation of the stress state at a point is given by the following matrix. Determine the principal stresses and the direction of the maximum principal stress.

$$
\left[\tau_{i j}\right]=\left[\begin{array}{ccc}
1 & -1 & 3 \\
-1 & 2 & 4 \\
3 & 4 & 5
\end{array}\right]
$$

B) Discuss significance of following terms in solid mechanics: (i) Principal strains, (ii) Strain-displacement equations, (iii) strain gauges.
C) Describe the importance of metal plasticity with suitable examples. Explain the following terms in the context of plasticity: (i) Deviatoric or π plane, (ii) Yield locus.
A) One of the differential equations of equilibrium is

$$
\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{y z}}{\partial z}+\gamma_{y}=0
$$

Derive above equation. (Hint: use force equilibrium for a cubicle element along a coordinate axis.)
B) Define following terms illustrating their significance in solid mechanics: (i) Stress tensor, (ii) Stress concentration factor, (iii) Stress intensity factor, (iv) Symmetry of cross shears, (v) Shear flow.
(5)

Page 3 of 5

| C) Prove that the strain energy stored in a hollow cylinder of length L, |
| :--- | :--- | :---: | :---: | :---: | :---: |
| polar area moment of intertia J and subjected to torque T is given |
| by $U=\frac{T^{2} L}{2 / G}$. | (5) | . |
| :--- |

Annexure 1

Stresses for two cylinders in contact with each other

$$
p_{\max }=\frac{2}{\pi} \frac{F}{b l}
$$

$b=\sqrt{\frac{2 F}{\pi l}\left[\frac{\frac{\left(1-v_{1}^{2}\right)}{E_{1}}+\frac{\left(1-v_{2}^{2}\right)}{E_{2}}}{\frac{1}{d_{1}}+\frac{1}{d_{2}}}\right]}$
$\sigma_{x}=-2 v p_{\max }\left[\sqrt{\left(1+\frac{z^{2}}{b^{2}}\right)}-\frac{z}{b}\right]$
$\sigma_{y}=-p_{\max }\left[\left(2-\frac{1}{1+z^{2} / b^{2}}\right) \sqrt{1+z^{2} / b^{2}}-2 \frac{z}{b}\right]$
$\sigma_{z}=-p_{\max }\left[\frac{1}{\sqrt{1+z^{2} / b^{2}}}\right]$

Stresses in thick pressurized cylinders

$\sigma_{r}=\frac{p_{a} a^{2}-p_{b} b^{2}}{b^{2}-a^{2}}-\frac{a^{2} b^{2}}{r^{2}} \times \frac{p_{a}-p_{b}}{b^{2}-a^{2}}$
$\sigma_{\theta}=\frac{p_{a} a^{2}-p_{b} b^{2}}{b^{2}-a^{2}}+\frac{a^{2} b^{2}}{r^{2}} \times \frac{p_{a}-p_{b}}{b^{2}-a^{2}}$
$\sigma_{z}=0$ with both ends open
$\sigma_{z}=v\left(\sigma_{r}+\sigma_{\theta}\right)$ with both ends closed

Stresses in rotating solid disks
Stresses in rotating disks with central hole

$$
\begin{aligned}
& \sigma_{r}=\frac{3+v}{8} \rho \omega^{2}\left(b^{2}-r^{2}\right) \\
& \sigma_{\theta}=\frac{3+v}{8} \rho \omega^{2} b^{2}-\frac{1+3 v}{8} \rho \omega^{2} r^{2}
\end{aligned}
$$

$$
\sigma_{r}=\frac{3+v}{8} \rho \omega^{2}\left(b^{2}+a^{2}-\frac{a^{2} b^{2}}{r^{2}}-r^{2}\right)
$$

$$
\sigma_{\theta}=\frac{3+v}{8} \rho \omega^{2}\left(b^{2}+a^{2}+\frac{a^{2} b^{2}}{r^{2}}-\frac{1+3 v}{3+v} r^{2}\right)
$$

SIF for edge cracked plate subjected to axial load P / bending moment M

$\left(K_{I}\right)_{P}=\frac{P}{B h} \sqrt{\pi a} Y_{P}$,

$$
Y_{P}=1.12-0.23 \alpha+10.55 \alpha^{2}-21.72 \alpha^{3}+30.39 \alpha^{4} ; \alpha=a / h
$$

$$
\left(K_{I}\right)_{M}=\frac{6 M}{B h^{2}} \sqrt{\pi a} Y_{M}
$$

$$
Y_{M}=1.122-1.4 \alpha+7.33 \alpha^{2}-13.08 \alpha^{3}+14 \alpha^{4} ; \alpha=a / h
$$

